Putative delays in interstitial fluid (ISF) glucose kinetics can be attributed to the glucose sensing systems used to measure them rather than the delay in ISF glucose itself.
نویسندگان
چکیده
BACKGROUND Since the advent of subcutaneous glucose sensors, there has been intense focus on characterizing the delay in the interstitial fluid (ISF) glucose response and the effect of insulin to alter the plasma-to-ISF glucose gradient. The Medtronic MiniMed continuous glucose monitoring system (CGMS) has often been used for this purpose; however, many of the studies have used experimental conditions that fall outside its intended use, for example, studies that have assessed the delay during rapid glucose excursions brought about by intravenous infusion of glucose or insulin. Under these conditions, it is possible that the rate of glucose change may exceed that allowed by CGMS filtering routines. If so, the estimated delay may be because of the filter rather than the ISF. Also, sensor characteristics, such as nonspecific offset current or stability, may have been inadvertently attributed to changes in the plasma-to-ISF gradient. The potential for these issues to have confounded the understanding of ISF glucose delay and gradient is investigated. METHODS An in vitro preparation in which no delay or gradient exists between sensor and measurement solution was used to recreate a rapidly changing glucose profile from a previously published in vivo study. The CGMS system (N = 6 sensors) was then used to estimate any artifactual delay and gradient introduced by the system per se. RESULTS One-point calibration resulted in an apparent change in gradient as glucose was lowered from approximately 100 to 50 mg/dl. After a two-point calibration, sensor glucose followed the glucose profile as it was decreased slowly from approximately 100 to approximately 60 mg/dl; however, when the glucose level was subsequently increased rapidly to approximately 150 mg/dl, CGMS filtering routines limited the rate of change of sensor glucose and introduced a delay similar to that previously attributed to ISF glucose equilibration delay. CONCLUSIONS Studies that have previously used the Medtronic MiniMed CGMS system to assess changes in the plasma-to-ISF glucose gradient may need to be reassessed to ensure that the offset current was estimated accurately. Studies that have used the system to assess ISF glucose delay during rapid, unphysiologic changes in glucose and did not remove the CGMS smoothing filters may have attributed CGMS filter delay to ISF glucose equilibration.
منابع مشابه
Use of subcutaneous interstitial fluid glucose to estimate blood glucose: revisiting delay and sensor offset.
BACKGROUND Estimates for delays in the interstitial fluid (ISF) glucose response to changes in blood glucose (BG) differ substantially among research groups. We review these findings along with arguments that continuous glucose monitoring (CGM) devices used to measure ISF delay contribute to the variability. We consider the impact of the ISF delay and review approaches to correct for it, includ...
متن کاملInterstitial Fluid Glucose Is Not Just a Shifted-in-Time but a Distorted Mirror of Blood Glucose: Insight from an In Silico Study
BACKGROUND Glucose sensors measure glucose concentration in the interstitial fluid (ISF), remote from blood. ISF glucose is well known to be "delayed" with respect to blood glucose (BG). However, ISF glucose is not simply a shifted-in-time version of BG but exhibits a more complex pattern. METHODS To gain insight into this problem, one can use linear systems theory. However, this may lose a m...
متن کاملModeling and Measurement of Correlation between Blood and Interstitial Glucose Changes
One of the most effective methods for continuous blood glucose monitoring is to continuously measure glucose in the interstitial fluid (ISF). However, multiple physiological factors can modulate glucose concentrations and affect the lag phase between blood and ISF glucose changes. This study aims to develop a compensatory tool for measuring the delay in ISF glucose variations in reference to bl...
متن کاملSubcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring.
The present study investigated the relationship between blood and subcutaneous interstitial fluid (ISF) glucose by employing an amperometric glucose sensor specifically developed for 3-day continuous glucose monitoring. The apparent sensor sensitivity and ISF glucose equilibration delay were estimated on separate days during hyperglycemic clamps in four dogs in which insulin was either suppress...
متن کاملTime Lag of Glucose From Intravascular to Interstitial Compartment in Humans
The accuracy of continuous interstitial fluid (ISF) glucose sensing is an essential component of current and emerging open- and closed-loop systems for type 1 diabetes. An important determinant of sensor accuracy is the physiological time lag of glucose transport from the vascular to the interstitial space. We performed the first direct measurement of this phenomenon to our knowledge in eight h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of diabetes science and technology
دوره 1 5 شماره
صفحات -
تاریخ انتشار 2007